Oracle Database Administartion
Lesson 7
· User management

· Granting and Revoking Privileges

· Object Priveleges

· System Priveleges

· Controlling Resource Usage by Users

· Profiles

 Create User
One of the most basic administrative requirements for a database is to identify the users. Each user who connects to your database should have an account. Shared accounts are difficult to troubleshoot and audit , and having them are a poor security practice. You create a new database account with the CREATE USER statement. When you create a new account, at a minimum, you must assign a unique username and authentication method. You can optionally assign additional attributes to the user account with the CREATE USER statement. To change or assign new attributes to an existing user account, use the ALTER USER statement.
Configuring Authentication

When you connect to an Oracle database instance, your user account must be authenticated. Authentication involves validating the identity of the user and confirming that they have the authority to use the database. Oracle offers three authentication methods for your user accounts: password authentication (the most common), external authentication, and global authentication
Password Authenticated Users

When a user with password authentication attempts to connect to the database, the database verifies that the username is a valid database account and that the password supplied matches that user’s password as stored in the database. Password authenticated user accounts are the most common and are sometimes referred to as database authenticated accounts. With a password authenticated account, the database stores the encrypted password in the data dictionary. For example, to create a password authenticated user named kamran with a password of agayev , you execute the following:

 CREATE USER kamran IDENTIFIED BY agayev;

The keywords IDENTIFIED BY password (in this case, password is agayev) tell the database that this user account is a password authenticated account
Externally Authenticated Users

 When an externally identified user attempts to connect to the database, the database verifies that the username is a valid database account and trusts that the operating system has performed authentication

CREATE USER ops$oracle IDENTIFIED EXTERNALLY;
Assigning a Default Tablespace
Every user is assigned a default tablespace. The default tablespace for a user is that tablespace where schema objects are stored when no TABLESPACE clause is given in statements that create tables or indexes

CREATE USER kamran IDENTIFIED BY agayev DEFAULT TABLESPACE users;
ALTER USER kamran DEFAULT TABLESPACE users;
Assigning a Temporary Tablespace

Every user is assigned a temporary tablespace in which the database stores temporary segments. Temporary segments are created during large sorting operations, such as

ORDER BY, GROUP BY, SELECT DISTINCT, MERGE JOIN, or CREATE INDEX

Granting and Revoking Privileges

Once you have created user accounts in Oracle, you will need to allow those users to perform certain actions in the database or to access and manipulate objects in the database. This is accomplished through the granting and revoking of different privileges (or permissions). Oracle has two different types of privileges that can be granted: system privileges and object privileges. System privileges allow a user to perform certain database actions, such as create a table, or create an index, or even connect to the instance. Object privileges allow a user to manipulate objects, as by reading data through a view, executing a stored procedure, or changing data in a table. System privileges are granted to and revoked from users by the DBA, while object privileges are granted to and revoked from users by the owner of the object

Granting System Privileges

You can grant system privileges either using the command line or through Oracle Enterprise Manager. The syntax for assigning system privileges is as follows:

GRANT privilege [, privilege, ...]

TO username [, username, ...]

[WITH ADMIN OPTION];

As you can see by this syntax, it is possible to grant multiple privileges to multiple users at the same time. The privileges granted to a user are immediately available to the user. This means that the user does not need to disconnect from the instance and log in again in order for the privilege change to take effect. Simply granting the privilege lets the user make use of it right away.

WITH ADMIN OPTION When a user is granted a system privilege, the grantor (i.e., the person granting the privilege, typically the DBA) also has the option to allow the grantee (the person receiving the privilege, typically the user) to grant the same privilege to other users. If this is the result desired, the grantor can grant the privilege using the WITH ADMIN OPTION. When privileges are granted WITH ADMIN OPTION, this means that the grantor has decided that the grantee can be fully trusted by him as well as by the user that granted him the system privilege in the first place. In essence all users holding a system privilege WITH ADMIN OPTION are considered equal and can grant and revoke that privilege from anyone, including the person who granted it to them in the first place
Revoking System Privileges

If you do not want anyone to continue to have a system privilege granted to them, you can use the REVOKE command or Enterprise Manager to remove the privileges granted. The syntax of the REVOKE command to revoke system privileges is very similar to that of granting it and can be used to revoke one or more privileges from one or more users/grantees, as follows:

REVOKE privilege [, privilege, ...]

FROM username [, username, ...];
It is important to note one side effect when the WITH ADMIN OPTION is specified at the time a system privilege is granted. While the DBA may revoke the privilege granted to the user WITH ADMIN OPTION, if the user has granted that same privilege to others, it is not removed from those users that were granted the privilege. For example, if you give the key to your car to a friend and tell him that it is alright to make copies of the key, when you ask for the key back from your friend, you cannot, at the same time, get back all copies that were made by him and given to others. In order to get the other copies of the key back, you need to find out who has them. Similarly, in Oracle you need to query the data dictionary to determine which other users were granted the permission being revoked by the user from which it is being revoked
Object Privileges

Users in Oracle can also be granted object privileges. Object privileges allow a user to manipulate data in the database or perform an action on an object, such as executing a stored procedure. Unlike system privileges, which are granted by the DBA, object privileges need to be granted by the owner of the object.

Granting Object Privileges

The syntax to assign object privileges is as follows:

GRANT privilege [,privilege, ...] | ALL [(column[, column, ...])]

ON objectname

TO user | role | PUBLIC

[WITH GRANT OPTION];

The major difference in the syntax between system and object privileges is that the keyword ON needs to be specified to determine which object the privileges apply to. Furthermore, object privileges for views and tables can also specify which column of the view or table they should be applied to. The keyword ALL specifies that all privileges that apply to the object should be granted. The privilege can be granted to a user, a role (to be discussed later), or the keyword PUBLIC, which means all users in the database.
Revoking Object Privileges

Revoking object privileges has similar syntax to granting them, as follows:

REVOKE privilege [,privilege, ...] | ALL [(column[, column, ...])]

ON objectname

FROM user | role | PUBLIC

[CASCADE CONSTRAINTS];

Unlike the WITH ADMIN OPTION for system privileges, if an object privilege is revoked from a user to whom it was granted WITH GRANT OPTION, that privilege would also be removed from anyone that user granted the privilege to. For example, if Damir granted John the SELECT privilege on the DAMIR.JOHN1 table WITH GRANT OPTION, and John then granted the SELECT privilege to Tim, then if Damir issued the command REVOKE SELECT ON DAMIR.JOHN1 FROM JOHN, Tim would also no longer have the privilege. This is because when object privileges are revoked, the revoke also cascades to anyone that the privilege was granted to by the user from whom it is being revoked.
Creating and Managing Roles

Up to this point you have seen how to assign permissions to other users. In small environments assigning permissions directly to users may be sufficient, especially if new users need to be created in the database only occasionally. However, in more complex or larger environments, or those where users are added and deleted frequently, Oracle provides a mechanism to group permissions together and then assign the whole group of permissions to a user: the ROLE.
A role is a container that holds privileges. The main benefit of a role is that it simplifies the process of granting privileges to users. To make the process efficient, a DBA creates a role and then grants all of the privileges required by a user to perform a task to the role. If another user comes along that needs to perform the same task, instead of granting that user the permission explicitly, the DBA grants the user the role. Any privileges that have been granted to a role that has been granted to a user automatically apply to the user. Similarly, if you need to grant new privileges to users or revoke existing privileges from users, and if these were granted to a role rather than users, you need to grant or revoke the privileges only once—at the role level—instead of numerous times. Furthermore, those privileges granted will be automatically active once the grant or revoke takes place. Changes to role privileges are dynamically modified for all users holding the role.
When you grant privileges to users, those privileges will be available no matter how the user accesses the database. This means that someone using a front-end client application that presents preconfigured forms may need the same level of privileges as someone connecting to the instance using iSQL*Plus and performing interactive queries. The problem with this is that a user of the front-end application could also connect to the instance and perform deletes, or other data manipulation, that may be more controlled through the front-end application. Roles, which can be selectively enabled and disabled, allow you to provide the user with additional privileges by enabling them when the user is using the front-end application, but not allow the user to have the same set of privileges if they connect to the instance using iSQL*Plus.

When you revoke an object privilege from a user in Oracle, if that user was granted the privilege WITH GRANT OPTION, anyone that the user granted the privilege to will also have it revoked. With roles, there are no cascading revokes for object privileges granted to roles, because you cannot grant object privileges to a role WITH GRANT OPTION; the syntax is not allowed. However, you can grant a system privilege, or another role, to a role WITH ADMIN OPTION. Doing so allows anyone granted the role to grant those system privileges or roles to others.

Creating Roles

Like most other security-related items in Oracle, you can create roles from the command line using iSQL*Plus or with Enterprise Manager. In order to create a role, you must have been assigned the CREATE ROLE system privilege, or the DBA role. The syntax for the CREATE ROLE command is

CREATE ROLE rolename

[NOT IDENTIFIED | IDENTIFIED

BY password | EXTERNALLY | GLOBALLY];
The name of each role must be unique in the database and cannot be the same as that of an existing user, since users and roles are both stored in the same place in the data dictionary. When you issue the CREATE ROLE command, the default is to create a role with the name specified and not require any authentication to have the role enabled for the user. However, if you want to enable the role through an application, you can specify a password for the role by using the IDENTIFIED BY clause followed by the password.
Granting and Revoking Permissions for Roles

You grant permissions to roles just as you grant them to users: using Enterprise Manager or the GRANT command. Permissions are revoked the same way as well: using the REVOKE command. The syntax for granting system permissions to roles is as follows:

GRANT system_priv [, system_priv, ...]

 TO role | PUBLIC [, role | PUBLIC, ...]

 [WITH ADMIN OPTION];

For granting object privileges to roles the syntax is as follows:

GRANT ALL [PRIVILEGES] | object_priv [(column, column, ...)]

 [, object_priv [(column, column, ...(] , ...]

ON [schema_name.]object_name

TO role | PUBLIC [, role | PUBLIC, ...];

Notice that you cannot grant object privileges WITH GRANT OPTION to roles, but you can grant system privileges WITH ADMIN OPTION.

To revoke system and object privileges from roles, the syntax is similar to revoking those same privileges from a user. For system privileges:

REVOKE system_priv | role_name [, system_priv | role_name, ...]

 FROM role | PUBLIC [,role | PUBLIC, ...];

And for object privileges:

REVOKE ALL [PRIVILEGES] | object_priv [, object_priv, ...]

ON [schema_name.]object_name

FROM role | PUBLIC [,role | PUBLIC, ...]

[CASCADE CONSTRAINTS]

Granting and Revoking Roles for Users

Once you have created a role and granted the role its further roles, along with the object

and system privileges desired, you next need to assign the role to users that you want

to inherit all the privileges that the role has. To do so, you use the GRANT command

or Oracle Enterprise Manager. The syntax of the GRANT command to grant roles to

users (as well as other roles) is

GRANT role_name [, role_name, ...]

 TO user_name | role | PUBLIC [, user_name | role | PUBLIC, ...]

 [WITH ADMIN OPTION];

If you grant a role WITH ADMIN OPTION, you are allowing the user to whom you are granting the role to also grant the role (and all its associated privileges) to others. In order to grant a role to a user or another role, you need to be the owner of the role (i.e., you are the user that issued the CREATE ROLE command) or have been granted the GRANT ANY ROLE privilege by the DBA. Just as you can grant a role to a user, you can also revoke the role to remove all of the role’s privileges from the user using the REVOKE command or Oracle Enterprise Manager. The syntax of the REVOKE command is again similar to what you have seen previously, as follows:

REVOKE role_name [, role_name, ...]

 FROM user_name | role | PUBLIC [, user_name | role | PUBLIC, ...];

If you revoke the role from a user, the role’s permissions will not be immediately taken away from the user, unless the user disconnects from the instance or disables the role. However, the user will not be able to reenable the role on the next connection attempt or by using the SET ROLE command once it has been revoked.
Setting a User’s Default Roles

Once you grant a role to a user, it is automatically configured to be a default role. This means that when the user connects to the instance, the role will automatically be enabled for the user and any privileges that the role has been granted will be available to the user. However, if you want some of the roles granted to the user to be active only when the user connects to the instance, you need to modify the set of default roles that are automatically enabled.
The ALTER USER command, or Oracle Enterprise Manager, can be used to manage a user’s default roles. The syntax of the ALTER USER command to manage a user’s default role list is as follows:

ALTER USER username DEFAULT ROLE

 role [, role, ...] | ALL [EXCEPT role [, role, ...]] | NONE;

If you do not want Oracle to enable all roles that a user has been granted, you must use the ALTER USER command to disable any roles that you do not want the user to have when they connect to the instance. You can then programmatically enable the roles or have the user issue the SET ROLE command to enable those roles that you disabled by default.

If you grant the user a role that requires a password, and if you make that role a default role, the user will not be required to enter a password in order to make use of the privileges granted to the role. In essence, making a role that has a password a default role for the user bypasses the password requirement. In this way some users may have the role and its privileges when they connect, by default, while other users will be required to enable the role manually and specify a password in order to access the privileges granted the role.You can also disable all roles that have been assigned to the user by using the NONE option when specifying which roles are default roles. After doing so, all roles granted to the user will be disabled and will need to be enabled using the SET ROLE command. The user will have only the capability to perform actions according to those system and object privileges that have been assigned directly to him/her, or to PUBLIC.

Dropping Roles

If you no longer need a role that you have been using, you can drop it from the database by issuing the DROP ROLE command, or by using Oracle Enterprise Manager. In order to drop a role, you must be the user who created the role, have been granted the DROP ANY ROLE system privilege, or have been granted the role WITH ADMIN OPTION. If any of these is not true, the command will fail and the role will not be dropped. The syntax of the DROP ROLE command is as follows:

DROP ROLE role_name;

When you drop a role, any user or role to which the role being dropped has been granted will have it revoked at the time the role is dropped. Any privileges that the role granted its holders will also be revoked at the time the role is dropped.
