Oracle Database Administartion
Lesson 6
· Managing Data Through SQL

· INSERT, UPDATE, DELETE

· PL/SQL Objects
· Packages (Built-in Packages)

· Functions

· Procedures

· Triggers

· Locks
· Lock Conflicts, Resolving Lock, Conflicts, Deadlocks
Managing Data through SQL
The INSERT Command
The basic INSERT statement creates one row at a time. Using what is called a subselect, you can cause the INSERT command to copy rows from one table to another. This method is also referred to as an INSERT select statement. The example in the slide is the following INSERT command:

insert into dept_80 (select * from employees

where department_id = 80);

In this case, the dept_80 table has exactly the same structure as the employees table. If this is not the case, you can name the columns in each table. The column values match in the order as named in the INSERT and SELECT statements. All that is required is that the data types match. For example:

insert into just_names (first, last)

(select first_name, last_name from employees);

Here the just_names table has only two columns that have the same data type as the first_name and last_name columns in the employees table.

Using the insert select method is a way to load data in bulk from one or more tables into another table.
The UPDATE Command
The UPDATE command is used to modify existing rows in a table. The number of rows modified by the UPDATE command depends on the WHERE condition. If the WHERE clause is omitted, then all rows are changed. If no rows satisfy the WHERE condition, then no rows are modified.

The DELETE Command
The DELETE command is used to remove existing rows from a table. The number of rows modified by the DELETE command depends on the WHERE condition. If the WHERE clause is omitted, then all rows are removed. If no rows satisfy the WHERE condition, then no rows are removed. Note that in the example, when no rows are deleted, it is not an error; the message returned only states that zero rows have been removed from the table.

The COMMIT and ROLLBACK Commands
By default, each DML command that is entered is not committed. Several tools (including iSQL*Plus) have options that can be set to commit on each command or a group of commands.

Before COMMIT or ROLLBACK is issued, the changes are in a pending state. Only the user who has made the change is allowed to see the changed data. Other users can select the same data, but see the data as it is before any change is made. Other users cannot issue DML on the same data that another user has changed.

By default, a user trying to make a change on the same row as another user waits until the first user either commits or rolls back the change. This is controlled automatically by Oracle database’s locking mechanism. Because the locking mechanism is built into the row itself, there is no way the database runs out of locks.

PL/SQL
PL/SQL is an Oracle programming language that provides procedural extensions to SQL. PL/SQL provides a common programming environment for Oracle databases and applications regardless of the operating system or hardware platform.

With PL/SQL, you can manipulate data with SQL statements and control program flow with procedural constructs such as IF-THEN, CASE, and LOOP. You can also declare constants and variables, define procedures and functions, use collections and object types, and trap run-time errors. PL/SQL program can also call programs written in other languages, such as C, C++, and Java.

PL/SQL also provides protection of data. The caller need not know the data structures being read or manipulated in order to make the call. The caller also need not have permission to access those objects; if the caller has permission to execute the PL/SQL program, that’s all that is necessary. Optionally, there is another mode of permissions for calling PL/SQL, where the caller must have permission to perform every statement being executed during the called program.

PL/SQL Objects
· Packages: A package is a collection of procedures and functions that are logically related. This part of a package is also called the specification (or spec), and describes the interface to your applications; it declares the types, variables, constants, exceptions, cursors, and subprograms available for use.

· Package body: The body fully defines cursors and subprograms, and so implements the spec. The body holds implementation details and private declarations, which are hidden from the caller.

· Type body: It is a collection of methods (procedures and functions) associated with user-defined data types. For more information about user-defined data types, refer to Oracle Database Application Developer’s Guide—Object Relational Features

· Procedures: A procedure is a PL/SQL block that performs a specific action.

· Functions: A function is a PL/SQL block that returns a single value by using the RETURN PL/SQL command. It is a procedure that has a return value.

· Triggers: A trigger is a PL/SQL block that is executed when a particular event occurs in the database. These events can be based on a table, such as when a row is inserted into the table. They can also be database events, such as when a user logs in to the database.

Functions
PL/SQL functions are typically used to compute a value. There are many built-in functions such as SYSDATE, SUM, AVG, and TO_DATE. Developers also create their own functions when writing applications. The code for a PL/SQL function must contain a RETURN statement. PL/SQL functions are created by entering a name, schema, and source code.

CREATE TABLE telebeler (id NUMBER, adi VARCHAR2(10), soyadi VARCHAR2(10), bal NUMBER);

INSERT INTO telebeler VALUES(1,'Kamran','Agayev',100);

INSERT INTO telebeler VALUES(2,'Zakir','Memmedov',45);

INSERT INTO telebeler VALUES(3,'Elcin','Ehmedov',80)

CREATE OR REPLACE FUNCTION function_test (p_id NUMBER)

RETURN VARCHAR2

AS

v_telebe_bal NUMBER;

BEGIN

SELECT bal INTO v_telebe_bal FROM telebeler

WHERE id=p_id;

IF v_telebe_bal>70 THEN

RETURN 'TEBRIKLER!!! Siz imtahandan muveffeqiyyetle kecmisiniz!';

ELSE

RETURN 'Tessuf. Siz imtahandan kesilmisiniz';

END IF;

END;

/

Procedures

Procedure is a module performing one or more actions; it does not need to return any values.
ALTER TABLE telebeler ADD (kurs NUMBER);

UPDATE telebeler SET kurs=1;

CREATE OR REPLACE PROCEDURE add_course

AS

BEGIN

UPDATE telebeler SET kurs=kurs+1;

END;

/

Packages
Package is a collection of PL/SQL objects grouped together under one package name. Packages include procedures, functions, cursors, declarations, types, and variables. There are numerous benefits in collecting objects into a package.

There are performance and maintainability advantages in grouping functions and procedures into a single package. Each package should be made up of two separately compiled database objects:

Package specification: This object (sometimes known as the package header) has an object type of PACKAGE and only contains the definition of the procedures, functions, and variables for the package.

Package body: This object has an object type of PACKAGE BODY and contains the actual code for the subprograms defined in the package specification.

CREATE OR REPLACE PACKAGE pack_all

AS

PROCEDURE update_course;

FUNCTION bal_yoxla (p_id NUMBER) RETURN varchar2;

END pack_all;

/

CREATE OR REPLACE PACKAGE BODY pack_all

AS

PROCEDURE update_course

IS

BEGIN

UPDATE telebeler SET kurs=kurs+1;

END update_course;

FUNCTION bal_yoxla (p_id NUMBER) RETURN varchar2

IS

v_telebel_bal NUMBER;

BEGIN

SELECT bal INTO v_telebel_bal FROM telebeler where id=p_id;

IF v_telebe_bal>70 THEN

RETURN 'Tebrikler!! siz imtahandan kecdiniz';

ELSE

RETURN 'Teessuf, siz imtahandan kesildiniz';

END IF;

END bal_yoxla;

END pack_all;

/

Built-in Packages
The Oracle database comes with over 350 built-in PL/SQL packages, which provide:

· Administration and maintenance utilities

· Extended functionality

Which packages an administrator uses depends on the type of applications that the database serves. A few of the more common administration and maintenance packages are:

DBMS_STATS: Gather, view, and modify optimizer statistics

DBMS_OUTPUT: Generate output from PL/SQL

DBMS_SESSION: PL/SQL access to the ALTER SESSION and SET ROLE statements

DBMS_RANDOM: Generate random numbers

DBMS_UTILITY: Get time, CPU time, and version information; compute a hash value, and perform many other miscellaneous functionalities

DBMS_OBFUSCATION_TOOLKIT: Encrypt, decrypt, and compute checksums

DBMS_SCHEDULER: Schedule functions and procedures that are callable from PL/SQL

DBMS_CRYPTO: Encrypt and decrypt database data

UTL_FILE: Read and write to operating system files from PL/SQL

Triggers
Triggers are PL/SQL code objects that are stored in the database and which automatically run or “fire” when something happens. The Oracle database allows many actions to serve as triggering events, including an insert into a table, a user logging in to the database, and someone trying to drop a table or change audit settings.

Triggers may call other procedures or functions. It is best to keep the trigger’s code very short and place anything that requires lengthy code in a separate package.

DBAs use triggers to assist in value-based auditing (discussed in a later lesson), to enforce complex constraints, and to automate many tasks
There are many different events that can be used to fire a trigger, and they are divided into three categories.
[image: image1.png]
DML event triggers fire when statements modify data.
DDL event triggers fire when statements create or in some way modify an object.
Database event triggers fire when certain things happen in the database.

Most triggers can be specified to fire either before the event is allowed to occur or after it has occured. For DML events, the trigger can be designed to fire once for the statement or with each row that is modified.

[image: image2.png]
CREATE OR REPLACE TRIGGER trg_telebeler

BEFORE INSERT ON telebeler

BEGIN

INSERT INTO log_telebeler VALUES(USER,SYSDATE);

END;

/

INSERT INTO telebeler VALUES(4,’Hesen’,’Muradov’,40,6);

[image: image3.png]
Locks
Locks prevent multiple sessions from changing the same data at the same time

Before the database allows a session to modify data, the session must first lock the data that is being modified. A lock gives the session exclusive control over the data so that no other transaction can modify the locked data until the lock is released.

Locks prevent multiple sessions from changing the same data at the same time

Before the database allows a session to modify data, the session must first lock the data that is being modified. A lock gives the session exclusive control over the data so that no other transaction can modify the locked data until the lock is released.

When multiple transactions need to lock the same resource, the first transaction to request the lock obtains it. Other transactions wait until the first transaction completes. The queue mechanism is automatic and requires no administrator interaction.

All locks are released at the end of a transaction. Transactions are completed when COMMIT or ROLLBACK is issued. In the case of a failed transaction, the same background process that automatically rolls back any changes from the failed transaction releases all locks held by that transaction.

Deadlocks

A deadlock is a special example of a lock conflict. Deadlocks arise when two or more sessions wait for data locked by each other. Because each is waiting on the other, neither can complete their transaction to resolve the conflict.

The Oracle database automatically detects deadlocks and terminates the statement with an error. The proper response to that error is either commit or rollback, which releases any other locks in that session so that the other session can continue its transaction.

Information about deadlocks are written to alertlog file

