Oracle Database Administartion
Lesson 5
· Managing Tables
· Create, Load, Alter, Drop, Display

· Managing Indexes
· Create, Alter, Drop
· Managing Views

· Create, Replace, Use, Update, Alter, Drop

· Managing Sequences

· Create, Alter, User, Drop

· Managing Synonyms

· Create, User, Drop
· Summary

What Is a Table?

Tables are the basic unit of data storage in an Oracle Database. Data is stored in rows and columns. You define a table with a table name, such as employees, and a set of columns. You give each column a column name, such as employee_id, last_name, and job_id; a datatype, such as VARCHAR2, DATE, or NUMBER; and a width.
Usually, the application developer is responsible for designing the elements of an application, including the tables. Database administrators are responsible for establishing the attributes of the underlying tablespace that will hold the application tables. Either the DBA or the applications developer, or both working jointly, can be responsible for the actual creation of the tables

Creating Tables

To create a new table in your schema, you must have the CREATE TABLE system privilege. To create a table in another user's schema, you must have the CREATE ANY TABLE system privilege. Additionally, the owner of the table must have a quota for the tablespace that contains the table, or the UNLIMITED TABLESPACE system privilege

CREATE TABLE telebeler (

id NUMBER,

adi VARCHAR2(100),

soyadi VARCHAR2(100),

yasi NUMBER

)

Creating Temporary Tables

It is also possible to create a temporary table. The definition of a temporary table is visible to all sessions, but the data in a temporary table is visible only to the session that inserts the data into the table. Use the CREATE GLOBAL TEMPORARY TABLE statement to create a temporary table. The ON COMMIT clause indicate if the data in the table is transaction-specific (the default) or session-specific, the implications of which are as follows:

DELETE ROWS This creates a temporary table that is transaction specific. A session becomes bound to the temporary table with a transactions first insert into the table. The binding goes away at the end of the transaction. The database truncates the table (delete all rows) after each commit.

PRESERVE ROWS This creates a temporary table that is session specific. A session gets bound to the temporary table with the first insert into the table in the session. This binding goes away at the end of the session or by issuing a TRUNCATE of the table in the session. The database truncates the table when you terminate the session

CREATE GLOBAL TEMPORARY TABLE telebeler (

id NUMBER,

adi VARCHAR2(100)

) ON COMMIT DELETE ROWS;

Inserting Data into Tables
There are several means of inserting or initially loading data into your tables. Most commonly used might be the following:

· SQL*Loader

· CREATE TABLE …. AS SELECT

· INSERT

· MERGE

CREATE TABLE …. AS SELECT
This command will create a table based on the structure and data of another table. For example, to create a table with the structure of “all_objects” table and with it’s data, issue:
CREATE TABLE test AS SELECT * FROM all_objects;

INSERT

This is standard INSERT command, which insert data to the table

INSERT INTO telebeler VALUES (1,’Kamran’,’Agayev’,26)

MERGE

The MERGE statement enables you to insert rows into or update rows of a table, by selecting rows from another existing table. If a row in the new data corresponds to an item that already exists in the table, then an UPDATE is performed, else an INSERT is performed.
CREATE TABLE telebeler1 (id NUMBER, adi VARCHAR2(100), soyadi VARCHAR2(100), deyer NUMBER);

CREATE TABLE telebeler2 (id NUMBER, adi VARCHAR2(100), soyadi VARCHAR2(100));

INSERT INTO telebeler1 VALUES(1,’Kamran’,’Agayev’,100);

INSERT INTO telebeler1 VALUES(2,’Elcin’,’Babayev’,80);

INSERT INTO telebeler1 VALUES(3,’Aslan’,’Suleymanov’,70);

INSERT INTO telebeler2 VALUES(1,’Kamran’,’Agayev’,200);

SELECT * FROM telebeler1 ;

1 Kamran

Agayev

100

2 Elcin

Babayev
80

3 Aslan

Suleymanov
70

SELECT * FROM telebeler2;

1 Kamran

Agayev

200

2 Fexri

Memmedov
70
MERGE INTO telebeler2 a

USING (SELECT * FROM telebeler1) b

ON (a.id=b.id)

WHEN MATCHED THEN UPDATE SET a.deyer=b.deyer

WHEN NOT MATCHED THEN INSERT (a.id, a.adi, a.soyadi, a.deyer)

VALUES (b.id, b.adi, b.soyadi, b.deyer);

2 rows merged.

Altering Tables

· Adding Table Columns

· Renaming Table Columns

· Dropping Table Columns

· Marking Columns Unused

ALTER TABLE telebeler ADD (qiymeti NUMBER);

ALTER TABLE telebeler MODIFY (adi VARCHAR2(40));

ALTER TABLE telebeler RENAME COLUMN adi TO adlari;

ALTER TABLE telebeler DROP COLUMN qiymeti;

ALTER TABLE telebeler SET UNUSED (deyer);

Dropping Tables

To drop a table that you no longer need, use the DROP TABLE statement. The table must be contained in your schema or you must have the DROP ANY TABLE system privilege.

DROP TABLE telebeler;

DROP TABLE telebeler CASCADE CONSTRAINTS;

When you drop a table, normally the database does not immediately release the space associated with the table. Rather, the database renames the table and places it in a recycle bin, where it can later be recovered with the FLASHBACK TABLE statement if you find that you dropped the table in error. If you should want to immediately release the space associated with the table at the time you issue the DROP TABLE statement, include the PURGE clause as shown in the following statement:

DROP TABLE telebeler PURGE;

Managing External Tables

Oracle Database allows you read-only access to data in external tables. External tables are defined as tables that do not reside in the database, and can be in any format for which an access driver is provided. By providing the database with metadata describing an external table, the database is able to expose the data in the external table as if it were data residing in a regular database table. The external data can be queried directly and in parallel using SQL.

CREATE OR REPLACE DIRECTORY tmp AS ‘/tmp’

GRANT READ ON DIRECTORY tmp TO kamran;
[oracle$] gedit test.dat

1,”Kamran”,”Agayev”

2,”Elcin”,”Babayev”

3,”Sahib”,”Memmedov”

SQL>

CREATE TABLE external_table (id NUMBER, adi VARCHAR2(100), soyadi VARCHAR2(100))

ORGANIZATION EXTERNAL(

TYPE ORACLE_LOADER

DEFAULT DIRECTORY tmp

ACCESS PARAMETERS (

RECORDS DELIMETED BY NEWLINE

BADFILE tmp: ‘file.bad’

LOGFILE tmp: ‘file.log’

FILEDS TERMINATED BY ‘,’ OPTIONALLY ENCLOSED BY ‘”’

MISSING FIELD VALUES ARE NULL

(id, adi, soyadi)

)

LOCATION (‘test.dat’)

)

REJECT LIMIT UNLIMITED

Viewing information about Tables

The following views allow you to access information about tables.

· DBA_TABLES

· DBA_TAB_COLUMNS

What is Indexes

Indexes are optional structures associated with tables and clusters that allow SQL statements to execute more quickly against a table. Just as the index in this manual helps you locate information faster than if there were no index, an Oracle Database index provides a faster access path to table data. You can use indexes without rewriting any queries. Your results are the same, but you see them more quickly.

Data is often inserted or loaded into a table using either the SQL*Loader or an import utility. It is more efficient to create an index for a table after inserting or loading the data. If you create one or more indexes before loading data, the database then must update every index as each row is inserted.

Creating Indexes
To create an index in your own schema, at least one of the following conditions must be true
· You have INDEX privilege on the table to be indexed.

· You have CREATE ANY INDEX system privilege.

CREATE INDEX idx_id ON telebeler(id)

Indexes can be unique or nonunique. Unique indexes guarantee that no two rows of a table have duplicate values in the key column (or columns). Nonunique indexes do not impose this restriction on the column values.

CREATE UNIQUE INDEX idx_unq_name ON telebeler (adi) TABLESPACE index

Rebuilding an Index
The following statement rebuilds the existing index

ALTER INDEX idx_name REBUILD

Dropping an Index
To drop an index, the index must be contained in your schema, or you must have the DROP ANY INDEX system privilege

Some reasons for dropping an index include:

· The index is no longer required.

· Applications do not use the index to query the data.

· The index has become invalid and must be dropped before being rebuilt.

DROP INDEX idx_name

Viewing index information

The following views display information about indexes:

DBA_INDEXES

DBA_IND_COLUMNS

Managing Views

A view is a logical representation of another table or combination of tables. A view derives its data from the tables on which it is based. These tables are called base tables. Base tables might in turn be actual tables or might be views themselves. All operations performed on a view actually affect the base table of the view. You can use views in almost the same way as tables. You can query, update, insert into, and delete from views, just as you can standard tables
This example shows creation of view based on telebeler table
CREATE TABLE telebeler (id NUMBER, adi VARCHAR2(10));

INSERT INTO telebeler VALUES(1,’Kamran’);

INSERT INTO telebeler VALUES(2,’Agayev’);

INSERT INTO telebeler VALUES(11,’Qafqaz’);

CREATE VIEW my_view AS

SELECT * FROM telebeler WHERE id>5;

SELECT * FROM my_view
CREATE VIEW my_view AS

SELECT * FROM telebeler WHERE id>5

WITH CHECK OPTION CONSTRAINT chk_opt;

The view created with my_view name, referenced only rows which id’s is greater than 5. Furthermore, the CHECK OPTION creates the view with constraint (named chk_opt) that INSERT and UPDATE statements issued against the view cannot result in rows that the view cannot select. For example, the following INSERT statement successfully inserts a row into the telebeler table
INSERT INTO my_view VALUES(6,’Qafqaz’)

But the following example will not successfully insert the value to telebeler table
INSERT INTO my_view VALUES(1,’Qafqaz2’);
Creating Views with errors

If there are no syntax errors in a CREATE VIEW statement, the database can create the view even if the defining query of the view cannot be executed. In this case, the view is considered "created with errors." For example, when a view is created that refers to a nonexistent table or an invalid column of an existing table, or when the view owner does not have the required privileges, the view can be created anyway and entered into the data dictionary. However, the view is not yet usable
CREATE FORCE VIEW AS

Replacing Views

CREATE OR REPLACE VIEW my_view AS

SELECT * FROM telebeler WHERE id>0;

Dropping Views
You can drop any view contained in your schema. Use this query to DROP the view

DROP VIEW my_view;

Managing Sequences

Sequences are database objects from which multiple users can generate unique integers. The sequence generator generates sequential numbers, which can help to generate unique primary keys automatically, and to coordinate keys across multiple rows or tables.

To create a sequence in your schema, you must have the CREATE SEQUENCE system privilege. To create a sequence in another user's schema, you must have the CREATE ANY SEQUENCE privilege.

Create a sequence using CREATE SEQUENCE statement. This statement will create a sequence with name my_sequence
CREATE SEQUENCE my_sequence

INCREMENT BY 1

START WITH 1

NOMAXVALUE

NOCYCLE

CACHE 10;
Using Sequences

To use a sequence, your schema must contain the sequence or you must have been granted the SELECT object privilege for another user's sequence. Once a sequence is defined, it can be accessed and incremented by multiple users (who have SELECT object privilege for the sequence containing the sequence) with no waiting. The database does not wait for a transaction that has incremented a sequence to complete before that sequence can be incremented again.
Generating Sequence Numbers with NEXTVAL
INSERT INTO telebeler VALUES (my_seq.NEXTVAL,’Qafqaz’);
As defined, the first reference to order_seq.NEXTVAL returns the value 1. Each subsequent statement that references order_seq.NEXTVAL generates the next sequence number (2, 3, 4,. . .). The pseudo-column NEXTVAL can be used to generate as many new sequence numbers as necessary. However, only a single sequence number can be generated for each row. In other words, if NEXTVAL is referenced more than once in a single statement, then the first reference generates the next number, and all subsequent references in the statement return the same number.
Using Sequence Numbers with CURRVAL

To use or refer to the current sequence value of your session, reference seq_name.CURRVAL. CURRVAL can only be used if seq_name.NEXTVAL has been referenced in the current user session (in the current or a previous transaction). CURRVAL can be referenced as many times as necessary, including multiple times within the same statement. The next sequence number is not generated until NEXTVAL is referenced.
INSERT INTO telebeler VALUES(my_seq.CURRVAL,’Qafqaz’);

Dropping Sequences

You can drop any sequence in your schema. To drop a sequence in another schema, you must have the DROP ANY SEQUENCE system privilege

DROP SEQUENCE my_seq;

Managing Synonyms

A synonym is an alias for a schema object. Synonyms can provide a level of security by masking the name and owner of an object and by providing location transparency for remote objects of a distributed database. Also, they are convenient to use and reduce the complexity of SQL statements for database users.

Synonyms allow underlying objects to be renamed or moved, where only the synonym needs to be redefined and applications based on the synonym continue to function without modification.

Creating Synonyms
To create a private synonym in your own schema, you must have the CREATE SYNONYM privilege. Create a synonym using the CREATE SYNONYM statement. The underlying schema object need not exist, nor do you need privileges to access the object.
CREATE PUBLIC SYNONYM my_synonym FOR my_schema.my_table;

Dropping View

You can drop any private synonym in your own schema. To drop a private synonym in another user's schema, you must have the DROP ANY SYNONYM system privilege. To drop a public synonym, you must have the DROP PUBLIC SYNONYM system privilege.
DROP SYNONYM my_synonym;

DROP PUBLIC SYNONYM my_synonym;

Viewing Information about Views, Sequences and Synonyms

DBA_VIEWS
DBA_SYNONYMS

DBA_SEQUENCES
