Oracle Database Administartion
Lesson 4
· Managing Control Files
· Create, Backup, Drop, Display

· Managing RedoLog files
· Create, Rename, Switch, Clear

· Managing Archive log Files
· Summary

What Is a Control File?

Every Oracle Database has a control file, which is a small binary file that records the physical structure of the database. The control file includes:

· The database name

· Names and locations of associated datafiles and redo log files

· The timestamp of the database creation

· The current log sequence number

· Checkpoint information

The control file must be available for writing by the Oracle Database server whenever the database is open. Without the control file, the database cannot be mounted and recovery is difficult.

The control file of an Oracle Database is created at the same time as the database. By default, at least one copy of the control file is created during database creation. On some operating systems the default is to create multiple copies. You should create two or more copies of the control file during database creation. You can also create control files later, if you lose control files or want to change particular settings in the control files.
Multiplex Control Files on Different Disks

Every Oracle Database should have at least two control files, each stored on a different physical disk. If a control file is damaged due to a disk failure, the associated instance must be shut down. Once the disk drive is repaired, the damaged control file can be restored using the intact copy of the control file from the other disk and the instance can be restarted. In this case, no media recovery is required.

The behavior of multiplexed control files is this:

· The database writes to all filenames listed for the initialization parameter CONTROL_FILES in the database initialization parameter file.

· The database reads only the first file listed in the CONTROL_FILES parameter during database operation.

· If any of the control files become unavailable during database operation, the instance becomes inoperable and should be aborted.

Back Up Control Files

It is very important that you back up your control files. This is true initially, and every time you change the physical structure of your database. Such structural changes include:

· Adding, dropping, or renaming datafiles

· Adding or dropping a tablespace, or altering the read/write state of the tablespace

· Adding or dropping redo log files or groups

Creating Control Files

This section describes ways to create control files, and contains the following topics:

· Creating Initial Control Files

· Creating Additional Copies, Renaming, and Relocating Control Files

· Creating New Control Files

Creating Initial Control Files

The initial control files of an Oracle Database are created when you issue the CREATE DATABASE statement. The names of the control files are specified by the CONTROL_FILES parameter in the initialization parameter file used during database creation. The filenames specified in CONTROL_FILES should be fully specified and are operating system specific. The following is an example of a CONTROL_FILES initialization parameter:

CONTROL_FILES = (/u01/oracle/prod/control01.ctl,

 /u02/oracle/prod/control02.ctl,

 /u03/oracle/prod/control03.ctl)

If files with the specified names currently exist at the time of database creation, you must specify the CONTROLFILE REUSE clause in the CREATE DATABASE statement, or else an error occurs. Also, if the size of the old control file differs from the SIZE parameter of the new one, you cannot use the REUSE clause.

Creating Additional Copies, Renaming, and Relocating Control Files

You can create an additional control file copy for multiplexing by copying an existing control file to a new location and adding the file name to the list of control files. Similarly, you rename an existing control file by copying the file to its new name or location, and changing the file name in the control file list. In both cases, to guarantee that control files do not change during the procedure, shut down the database before copying the control file.

To add a multiplexed copy of the current control file or to rename a control file:

· Shut down the database.

· Copy an existing control file to a new location, using operating system commands.

· Edit the CONTROL_FILES parameter in the database initialization parameter file to add the new control file name, or to change the existing control filename.

· Restart the database.

The CREATE CONTROLFILE Statement

You can create a new control file for a database using the CREATE CONTROLFILE statement. The following statement creates a new control file for the prod database (a database that formerly used a different database name):

CREATE CONTROLFILE

 SET DATABASE prod

 LOGFILE GROUP 1 ('/u01/oracle/prod/redo01_01.log',

 '/u01/oracle/prod/redo01_02.log'),

 GROUP 2 ('/u01/oracle/prod/redo02_01.log',

 '/u01/oracle/prod/redo02_02.log'),

 GROUP 3 ('/u01/oracle/prod/redo03_01.log',

 '/u01/oracle/prod/redo03_02.log')

 RESETLOGS

 DATAFILE '/u01/oracle/prod/system01.dbf' SIZE 3M,

 '/u01/oracle/prod/rbs01.dbs' SIZE 5M,

 '/u01/oracle/prod/users01.dbs' SIZE 5M,

 '/u01/oracle/prod/temp01.dbs' SIZE 5M

 MAXLOGFILES 50

 MAXLOGMEMBERS 3

 MAXLOGHISTORY 400

 MAXDATAFILES 200

 MAXINSTANCES 6

 ARCHIVELOG;
Backing Up Control Files

Use the ALTER DATABASE BACKUP CONTROLFILE statement to back up your control files. You have two options:

Back up the control file to a binary file (duplicate of existing control file) using the following statement:

ALTER DATABASE BACKUP CONTROLFILE TO '/oracle/backup/control.bkp';

Produce SQL statements that can later be used to re-create your control file:

ALTER DATABASE BACKUP CONTROLFILE TO TRACE;

This command writes a SQL script to the database trace file where it can be captured and edited to reproduce the control file.

Recovering a Control File Using a Current Copy

This section presents ways that you can recover your control file from a current backup or from a multiplexed copy.

Recovering from Control File Corruption Using a Control File Copy

This procedure assumes that one of the control files specified in the CONTROL_FILES parameter is corrupted, that the control file directory is still accessible, and that you have a multiplexed copy of the control file.

With the instance shut down, use an operating system command to overwrite the bad control file with a good copy:

% cp /u03/oracle/prod/control03.ctl /u02/oracle/prod/control02.ctl

Start SQL*Plus and open the database:

SQL> STARTUP
Dropping Control Files

You want to drop control files from the database, for example, if the location of a control file is no longer appropriate. Remember that the database should have at least two control files at all times.

· Shut down the database.

· Edit the CONTROL_FILES parameter in the database initialization parameter file to delete the old control file name.

· Restart the database.

Displaying Control File Information
V$CONTROLFILE

V$PARAMETER

What Is the Redo Log?

The most crucial structure for recovery operations is the redo log, which consists of two or more preallocated files that store all changes made to the database as they occur. Every instance of an Oracle Database has an associated redo log to protect the database in case of an instance failure.

How Oracle Database Writes to the Redo Log

The redo log of a database consists of two or more redo log files. The database requires a minimum of two files to guarantee that one is always available for writing while the other is being archived (if the database is in ARCHIVELOG mode).

LGWR writes to redo log files in a circular fashion. When the current redo log file fills, LGWR begins writing to the next available redo log file. When the last available redo log file is filled, LGWR returns to the first redo log file and writes to it, starting the cycle again. Figure 6-1 illustrates the circular writing of the redo log file. The numbers next to each line indicate the sequence in which LGWR writes to each redo log file.

Log Switches and Log Sequence Numbers

A log switch is the point at which the database stops writing to one redo log file and begins writing to another. Normally, a log switch occurs when the current redo log file is completely filled and writing must continue to the next redo log file. However, you can configure log switches to occur at regular intervals, regardless of whether the current redo log file is completely filled. You can also force log switches manually.

Oracle Database assigns each redo log file a new log sequence number every time a log switch occurs and LGWR begins writing to it. When the database archives redo log files, the archived log retains its log sequence number. A redo log file that is cycled back for use is given the next available log sequence number.

Multiplexing Redo Log Files

Oracle Database lets you multiplex the redo log files of an instance to safeguard against damage to any single file. When redo log files are multiplexed, LGWR concurrently writes the same redo log information to multiple identical redo log files, thereby eliminating a single point of redo log failure.

[image: image1.png]Group 1

Group2

Group 1

Group2

Creating Redo Log Groups and Members

Plan the redo log of a database and create all required groups and members of redo log files during database creation. However, there are situations where you might want to create additional groups or members. For example, adding groups to a redo log can correct redo log group availability problems.

Creating Redo Log Groups

To create a new group of redo log files, use the SQL statement ALTER DATABASE with the ADD LOGFILE clause.

The following statement adds a new group of redo logs to the database:

ALTER DATABASE

 ADD LOGFILE ('/oracle/dbs/log1c.rdo', '/oracle/dbs/log2c.rdo') SIZE 500K;
You can also specify the number that identifies the group using the GROUP clause:

ALTER DATABASE

 ADD LOGFILE GROUP 10 ('/oracle/dbs/log1c.rdo', '/oracle/dbs/log2c.rdo')

 SIZE 500K;
Creating Redo Log Members

In some cases, it might not be necessary to create a complete group of redo log files. A group could already exist, but not be complete because one or more members of the group were dropped (for example, because of a disk failure). In this case, you can add new members to an existing group.

To create new redo log members for an existing group, use the SQL statement ALTER DATABASE with the ADD LOGFILE MEMBER clause. The following statement adds a new redo log member to redo log group number 2:

ALTER DATABASE ADD LOGFILE MEMBER '/oracle/dbs/log2b.rdo' TO GROUP 2;

Notice that filenames must be specified, but sizes need not be. The size of the new members is determined from the size of the existing members of the group.

When using the ALTER DATABASE statement, you can alternatively identify the target group by specifying all of the other members of the group in the TO clause, as shown in the following example:

ALTER DATABASE ADD LOGFILE MEMBER '/oracle/dbs/log2c.rdo'

 TO ('/oracle/dbs/log2a.rdo', '/oracle/dbs/log2b.rdo');

Relocating and Renaming Redo Log Members

You can use operating system commands to relocate redo logs, then use the ALTER DATABASE statement to make their new names (locations) known to the database. This procedure is necessary, for example, if the disk currently used for some redo log files is going to be removed, or if datafiles and a number of redo log files are stored on the same disk and should be separated to reduce contention.

Steps for Renaming Redo Log Members

1. Shut down the database.

SHUTDOWN

2. Copy the redo log files to the new location.

Operating system files, such as redo log members, must be copied using the appropriate operating system commands. See your operating system specific documentation for more information about copying files.

The following example uses operating system commands (UNIX) to move the redo log members to a new location:

mv /diska/logs/log1a.rdo /diskc/logs/log1c.rdo

mv /diska/logs/log2a.rdo /diskc/logs/log2c.rdo
3. Startup the database, mount, but do not open it.

CONNECT / as SYSDBA

STARTUP MOUNT

4. Rename the redo log members.

Use the ALTER DATABASE statement with the RENAME FILE clause to rename the database redo log files.

ALTER DATABASE

 RENAME FILE '/diska/logs/log1a.rdo', '/diska/logs/log2a.rdo'

 TO '/diskc/logs/log1c.rdo', '/diskc/logs/log2c.rdo';

5. Open the database for normal operation.

The redo log alterations take effect when the database is opened.

ALTER DATABASE OPEN;
Dropping Log Groups
The following statement drops redo log group number 3:

ALTER DATABASE DROP LOGFILE GROUP 3;
Dropping Redo Log Members

The following statement drops the redo log /oracle/dbs/log3c.rdo:

ALTER DATABASE DROP LOGFILE MEMBER '/oracle/dbs/log3c.rdo';
Forcing Log Switches

A log switch occurs when LGWR stops writing to one redo log group and starts writing to another. By default, a log switch occurs automatically when the current redo log file group fills.

To force a log switch, you must have the ALTER SYSTEM privilege. Use the ALTER SYSTEM statement with the SWITCH LOGFILE clause.

The following statement forces a log switch:

ALTER SYSTEM SWITCH LOGFILE;

Clearing a Redo Log File

A redo log file might become corrupted while the database is open, and ultimately stop database activity because archiving cannot continue. In this situation the ALTER DATABASE CLEAR LOGFILE statement can be used reinitialize the file without shutting down the database.

The following statement clears the log files in redo log group number 3:

ALTER DATABASE CLEAR LOGFILE GROUP 3

If the corrupt redo log file has not been archived, use the UNARCHIVED keyword in the statement.

ALTER DATABASE CLEAR UNARCHIVED LOGFILE GROUP 3;

Viewing Redo Log Information

V$LOG

V$LOGFILE
What Is the Archived Redo Log?

Oracle Database lets you save filled groups of redo log files to one or more offline destinations, known collectively as the archived redo log, or more simply the archive log. The process of turning redo log files into archived redo log files is called archiving. This process is only possible if the database is running in ARCHIVELOG mode. You can choose automatic or manual archiving.

An archived redo log file is a copy of one of the filled members of a redo log group. It includes the redo entries and the unique log sequence number of the identical member of the redo log group. For example, if you are multiplexing your redo log, and if group 1 contains identical member files a_log1 and b_log1, then the archiver process (ARCn) will archive one of these member files. Should a_log1 become corrupted, then ARCn can still archive the identical b_log1. The archived redo log contains a copy of every group created since you enabled archiving.

When the database is running in ARCHIVELOG mode, the log writer process (LGWR) cannot reuse and hence overwrite a redo log group until it has been archived. The background process ARCn automates archiving operations when automatic archiving is enabled. The database starts multiple archiver processes as needed to ensure that the archiving of filled redo logs does not fall behind.

Choosing Between NOARCHIVELOG and ARCHIVELOG Mode

Running a Database in NOARCHIVELOG Mode

When you run your database in NOARCHIVELOG mode, you disable the archiving of the redo log. The database control file indicates that filled groups are not required to be archived. Therefore, when a filled group becomes inactive after a log switch, the group is available for reuse by LGWR.

Running a Database in ARCHIVELOG Mode

When you run a database in ARCHIVELOG mode, you enable the archiving of the redo log. The database control file indicates that a group of filled redo log files cannot be reused by LGWR until the group is archived. A filled group becomes available for archiving immediately after a redo log switch occurs.

The archiving of filled groups has these advantages:

· A database backup, together with online and archived redo log files, guarantees that you can recover all committed transactions in the event of an operating system or disk failure.

· If you keep an archived log, you can use a backup taken while the database is open and in normal system use.

· You can keep a standby database current with its original database by continuously applying the original archived redo logs to the standby.

[image: image2.png]Redo Log
N
)))
Lowa Lown LowA Lawn
Balso
)
=] = i
e

Changing the Database Archiving Mode

To change the archiving mode of the database, use the ALTER DATABASE statement with the ARCHIVELOG or NOARCHIVELOG clause. To change the archiving mode, you must be connected to the database with administrator privileges (AS SYSDBA).

The following steps switch the database archiving mode from NOARCHIVELOG to ARCHIVELOG:

1. Shut down the database instance.

SHUTDOWN

An open database must first be closed and any associated instances shut down before you can switch the database archiving mode. You cannot change the mode from ARCHIVELOG to NOARCHIVELOG if any datafiles need media recovery.

2. Back up the database.

Edit the initialization parameter file to include the initialization parameters that specify the destinations for the archive log files (see "Specifying Archive Destinations").

3. Start a new instance and mount, but do not open, the database.

STARTUP MOUNT

To enable or disable archiving, the database must be mounted but not open.

4. Change the database archiving mode. Then open the database for normal operations.

ALTER DATABASE ARCHIVELOG;

ALTER DATABASE OPEN;

Specifying the Archive Destination

Before you can archive redo logs, you must determine the destination to which you will archive and familiarize yourself with the various destination states. The dynamic performance (V$) views, listed in "Viewing Information About the Archived Redo Log", provide all needed archive information.

Using the LOG_ARCHIVE_DEST_n Parameter

Use the LOG_ARCHIVE_DEST_n parameter (where n is an integer from 1 to 10) to specify from one to ten different destinations for archival. Each numerically suffixed parameter uniquely identifies an individual destination.

Perform the following steps to set the destination for archived redo logs using the LOG_ARCHIVE_DEST_n initialization parameter:

1. Use SQL*Plus to shut down the database.

SHUTDOWN

2. Set the LOG_ARCHIVE_DEST_n initialization parameter to specify from one to ten archiving locations. The LOCATION keyword specifies an operating system specific path name. For example, enter:

LOG_ARCHIVE_DEST_1 = 'LOCATION = /disk1/archive'

LOG_ARCHIVE_DEST_2 = 'LOCATION = /disk2/archive'

LOG_ARCHIVE_DEST_3 = 'LOCATION = /disk3/archive'

3. Optionally, set the LOG_ARCHIVE_FORMAT initialization parameter, using %t to include the thread number as part of the file name, %s to include the log sequence number, and %r to include the resetlogs ID (a timestamp value represented in ub4). Use capital letters (%T, %S, and %R) to pad the file name to the left with zeroes.

The following example shows a setting of LOG_ARCHIVE_FORMAT:

LOG_ARCHIVE_FORMAT = arch_%t_%s_%r.arc

This setting will generate archived logs as follows for thread 1; log sequence numbers 100, 101, and 102; resetlogs ID 509210197. The identical resetlogs ID indicates that the files are all from the same database incarnation:

/disk1/archive/arch_1_100_509210197.arc,

/disk1/archive/arch_1_101_509210197.arc,

/disk1/archive/arch_1_102_509210197.arc
Viewing Information About the Archived Redo Log

V$ARCHIVED_LOG

V$ARCHIVE_DEST

The ARCHIVE LOG LIST Command

The SQL*Plus command ARCHIVE LOG LIST displays archiving information for the connected instance. For example:

SQL> ARCHIVE LOG LIST

Database log mode Archive Mode

Automatic archival Enabled

Archive destination D:\oracle\oradata\IDDB2\archive

Oldest online log sequence 11160

Next log sequence to archive 11163

Current log sequence 11163

This display tells you all the necessary information regarding the archived redo log settings for the current instance:

The database is currently operating in ARCHIVELOG mode.

Automatic archiving is enabled.

The archived redo log destination is D:\oracle\oradata\IDDB2\archive .

The oldest filled redo log group has a sequence number of 11160.

The next filled redo log group to archive has a sequence number of 11163.

The current redo log file has a sequence number of 11163.

