Oracle Database Administartion
Lesson 3
· Starting up the Database

· Shutting down the Database

· Viewing alert.log file

· Configuring Oracle Environment
· Using SQL*Plus
· Tablespaces (Altering, Dropping)
Summary

Starting up the Database
Remember that the instance and the database are separate entities: they can exist independently of each other. The startup process is therefore staged: first you build the instance in memory, second you enable a connection to the database by mounting it, and third you open the database for use. At any moment, a database will be in one of four states:

• SHUTDOWN

• NOMOUNT

• MOUNT

• OPEN

When the database is in SHUTDOWN mode, all files are closed and the instance does not exist. In the NOMOUNT mode, the instance has been built in memory (the SGA has been created and the background processes started, according to whatever is specified in its parameter file) but no connection has been made to a database. It is indeed possible that the database does not yet exist. In MOUNT mode, the instance locates and reads the database control file. In OPEN mode, all database files are located and opened and the database is made available for use by end users. The startup process is staged: whenever you issue a startup command, it will go through these stages. It is possible to stop the startup part way. For example, if your control file is damaged, or a multiplexed copy is missing, you will not be able to mount the database, but by stopping in NOMOUNT mode, you may be able to repair the damage. Similarly, if there are problems with any datafiles or redo log files, you may be able to repair them in MOUNT mode before transitioning the database to OPEN mode.

At any stage, how does the instance find the files it needs, and exactly what happens? Start with NOMOUNT. When you issue a startup command, Oracle will attempt to locate a parameter file. There are three default filenames. On Unix they are

$ORACLE_HOME/dbs/spfile<SID>.ora

$ORACLE_HOME/dbs/spfile.ora

$ORACLE_HOME/dbs/init<SID>.ora

Once the instance is successfully started in NOMOUNT mode, it may be transitioned to MOUNT mode by reading the controlfile. It locates the controlfile by using the CONTROL_FILES parameter, which it knows from having read the parameter file used when starting in NOMOUNT mode. If the controlfile (or any multiplexed copy of it) is damaged or missing, the database will not mount and you will have to take appropriate action before proceeding further. All copies of the controlfile must be available and identical if the mount is to be successful. As part of the mount, the names and locations of all the datafiles and online redo logs are read from the controlfile, but Oracle does not yet attempt to find them. This happens during the transition to OPEN mode. If any files are missing or damaged, the database will remain in MOUNT mode and cannot be opened until you take appropriate action. Furthermore, even if all the files are present, they must be synchronized before the database opens. If the last shutdown was orderly, with all database buffers in the database buffer cache being flushed to disk by DBWn, then everything will be synchronized: Oracle will know that all committed transactions are safely stored in the datafiles, and that no uncommitted transactions are hanging about waiting to be rolled back. However, if the last shutdown was disorderly (such as a power cut, or the server being rebooted), then Oracle must repair the damage. He process that mounts and opens the database (and carries out repairs, if the previous shutdown was disorderly) is the SMON. Only after the database has been successfully opened will Oracle permit user sessions to be established.
Shutdown should be the reverse of startup. During an orderly shutdown, the database is first closed and then dismounted, and finally the instance is stopped. During the close phase, all sessions are terminated: active transactions are rolled back by PMON, completed transactions are flushed to disk by DBWn, and the datafiles and redo log files are closed. During the dismount, the controlfile is closed. Then the instance is stopped by deallocating the SGA and terminating the background processes. Now look at the syntax for startup and shutdown, beginning with how to connect.
Shutdown

There are options that may be used on the shutdown command:

shutdown [normal | transactional | immediate | abort]
Normal This is the default. No new user connections will be permitted, but all current connections are allowed to continue. Only once all users have (voluntarily!) logged off will the database actually shut down.

Transactional No new user connections are permitted; existing sessions that are not in a transaction will be terminated; sessions currently in a transaction are allowed to complete the transaction and will then be terminated. Once all sessions are terminated, the database will shut down.

 Immediate No new sessions are permitted, and all currently connected sessions are terminated. Any active transactions are rolled back, and the database will then shut down.

Abort As far as Oracle is concerned, this is the equivalent of a power cut.The instance terminates immediately. Nothing is written to disk; no file handles are closed; there is no attempt to terminate transactions that may be in progress in any orderly fashion.
The “normal,” “immediate,” and “transactional” shutdown modes are usually referred to as “clean,” “consistent,” or “orderly” shutdowns. After all sessions are terminated, PMON will roll back any incomplete transactions. Then a checkpoint is issued (remember the CKPT process from Chapter 3?), forcing the DBWn process to write all updated data from the database buffer cache down to the datafiles. LGWR also f lushes any change vectors still in memory to the logfiles. Then the file headers are updated, and the file handles closed. This means that the database is in a “consistent” state: all committed transactions are in the datafiles, there are no uncommitted transactions hanging about that need to be rolled back, and all datafiles and logfiles are synchronized.

The “abort” mode, often referred to as a “disorderly” shutdown, leaves the database in an “inconsistent” state: it is quite possible that committed transactions have been lost, because they existed only in memory and DBWn had not yet written them to the datafiles. Equally, there may be uncommitted transactions in the datafiles that have not yet been rolled back. This is the definition of a corrupted database: it may be missing committed transactions, or storing uncommitted transactions. These corruptions must be repaired by instance recovery. It is exactly as though the database server had been switched off, or perhaps rebooted, while the database was running

Viewing the Alert Log
Each database has an alert_<sid>.log file. The file is on the server with the database and is stored in the directory specified with the background_dump_dest initialization parameter. The alert file of a database is a chronological log of messages and errors, including the following:

Any nondefault initialization parameters used at startup

All internal errors (ORA-600), block corruption errors (ORA-1578), and deadlock errors (ORA-60) that occurred

Administrative operations, such as the SQL statements CREATE, ALTER, DROP DATABASE, and TABLESPACE, and the Enterprise Manager or SQL*Plus statements STARTUP, SHUTDOWN, ARCHIVE LOG, and RECOVER

Several messages and errors relating to the functions of shared server and dispatcher processes

Errors during the automatic refresh of a materialized view

Enterprise Manager monitors the alert log file and notifies you of critical errors. You can also view the log to see noncritical error and informative messages. The file can grow to an unmanageable size. You can occasionally back up the alert file and delete the current alert file. When the database attempts to write to the alert file again, it re-creates a new one.

Using SQL*Plus

.bashrc file
ORACLE_HOME=/home/oracle/OraHome_1

export ORACLE_HOME

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ORACLE_HOME/lib

export LD_LIBRARY_PATH

PATH=$ORACLE_HOME/bin:$PATH

export PATH

export ORACLE_SID=qafqaz

alias database='export ORACLE_SID=qafqaz;sqlplus "/ as sysdba“‘

SQL> host ls

[oracle$] cd /tmp

[oracle$] gedit test.sql

SELECT name FROM v$controlfile;

SQL>@test.sql

Calling SQL*Plus from a Shell Script

[oracle$] sqlplus /nolog

SQL> connect / as sysdba

SQL> create user kamran identified by kamran;

SQL> grant dba to kamran;

SQL> disc

SQL> connect kamran/kamran

SQL> create table test (id number);

SQL> disc

[oracle$] gedit test.sh

sqlplus kamran/kamran <<EOF

insert into test select count(1) from all_tables;

commit;

quit;

EOF

exit;

[oracle$] chmod 755 test.sh

[oracle$]./test.sh

Tablespaces

Within a database the tablespace is the largest storage structure. A database in Oracle 10g must have at least three tablespaces: SYSTEM, SYSAUX, and one undo tablespace. These are created when you create the database; you create others for a specific purpose in order to manage your database objects and ensure the instance and database perform well. You should also create at least one additional tablespace for specific data: a temporary tablespace to hold temporary objects created when a sort takes place and cannot be completely performed in memory.
Segments

Within a tablespace, space is allocated to segments. A segment is an object in the database that requires storage, such as a table or an index
Extents

When space is allocated for segments in a tablespace, it is allocated an extent at a time. A segment consists of one or more extents, and when a segment (e.g., a table or an index) is created, at least one extent is allocated at creation time. Extents are made of contiguous data blocks and can be managed either manually by the DBA or automatically by Oracle, depending upon the conditions specified by the DBA, or Oracle defaults. Extents are created in the datafiles belonging to the tablespace on which the segment is defined. A segment can exist in only one tablespace, and an extent exists in a datafile belonging to the tablespace.
The CREATE TABLESPACE Command
To create a tablespace, all you need is the name of the tablespace and the datafile specification; all other settings are left at Oracle defaults, as in this example:

CREATE TABLESPACE default_demo DATAFILE '$ORACLE_BASE/oradata/default_demo01.dbf' SIZE 10M;
This one command did everything: physically created the datafile, created the tablespace, updated the controlfile and the data dictionary, and set all the defaults for the new tablespace.
Modifying Tablespaces

Since databases generally are not static, you will from time to time need to make changes to the tablespaces you created. These can be common tasks such as adding datafiles to a tablespace or increasing the size of existing datafiles, taking a tablespace offline for maintenance or recovery purposes, or changing the mode from read/write to read-only or vice versa. All of these tasks can be accomplished from the command line using the ALTER TABLESPACE command or using Enterprise Manager. You can also rename a tablespace if needed, but this is generally not recommended after segments have been created on it
Dropping Tablespaces

The DROP TABLESPACE command allows you to drop an existing tablespace in the database. To perform this action, you must have the DROP TABLESPACE system privilege. You can then issue the following command:

DROP TABLESPACE OCP10GDATA;If there are objects in the tablespace, you will get the following error:

DROP TABLESPACE OCP10GDATA
· ORA-01549: tablespace not empty, use INCLUDING CONTENTS option

If there are foreign key constraints that depend on tables on the tablespace, you can modify the syntax to drop those links too by using the following syntax:

DROP TABLESPACE OCP10GDATA INCLUDING CONTENTS CASCADE CONSTRAINTS;
